

LH power threshold and H-mode pedestal height versus X-point height

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia^{1*}, R. Maingi¹

 ¹ Oak Ridge National Laboratory, Oak Ridge, TN
* Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

NSTX Research Forum Princeton, NJ March 15 – 18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

XP would use X-point height as a tool to explore the effect of neutrals on the plasma edge

- LH power threshold scaling with Z_X
 - JET, DIII-D reduction in P_{LH} as X-point moves closer to divertor (leg length shrinks)
 - Indications that P_{LH} decreases as recycling increases
 - NSTX lithium: P_{LH} decreases with divertor D_{α}
 - ITPA PEP-28: connection length or neutrals?
 - NSTX can decouple with lithium
- Impact of neutrals on H-mode pedestal
 - Density profile depends on neutral penetration
 - NSTX: Change H-mode density profile via lithium coatings
 - Low recycling regimes not as easy to achieve on other devices
 - Contributes to FY12 JRT

Distance from (Virtual) Septum top (cm)

R Maingi, et al., PRL 103 (2009)

Experimental plan

- First ½ day: Shot development and H-mode pedestal measurements
 - X-point height and strike point control
 - Align strike points with tile probes (low triangularity shape)
 - Target Type-1 ELMS with 2 3 different X-point heights with low divertor recycling
 - Enhances impact of connection length
 - Repeat with reduced inter-shot lithium (or no lithium) if time
- Second $\frac{1}{2}$ day: Use developed shots to measure P_{LH} vs Z_X
 - Use two different shapes and two levels of inter-shot lithium
 - NBI heating and all available turbulence diagnostics
 - If time, explore impact of fueling in private flux region

Shaing and Chang: ion orbit loss to divertor contribute to mean poloidal flows

- Shaing bifurcation model
 - Collisionless ions lost on banana orbits to wall or SOL collision
 - Source of mean poloidal flow (i.e., E_r)
 - Return current via reduction in collisional ion flux out of plasma
 - Two roots:
 - L root: low poloidal flows, ion current is finite
 - At critical edge collisionality, multiple roots
 - H root: large poloidal flow, small ion current
- Chang X-transport model
 - X-point enhances orbit loss
 - lons primarily lost to inner divertor
 - Current loop closes through parallel currents through SOL and conducting divertor

C.S. Chang, S. Ku, H. Weitzner, PoP **9**, No. 9, 3884 (2002)

KC Shaing, and EC Crume,

PRL 63, 2369 (1989)

Low triangularity data on NSTX consistent with a transition from an L root to H root

- L-mode with $P_{heat} < P_{LH}$
 - D_{α} light primarily from outer divertor
 - Near-zero current through CHI gap
 - Negligible ion flux to inboard divertor probes

- L-mode with $P_{heat} \sim P_{LH}$
 - Large increase in D_{α} light from inboard divertor (precursor to transition)
 - Several hundred amps of current from inboard to ouboard divertor
 - Increase in ion flux to inboard divertor
- At LH transition
 - e- edge collisionality very similar, independent of P_{nbi}, gas, lithium
 - D_{α} drops on both inboard and outboard
 - Current through CHI gap reverses in sign, decays to zero ~ 20ms
 - Change in ion flux not well resolved (100 Hz sweep)